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 Iterative sum of squares
ItSum_Squares(m,n)
Sum:=0
for i = m to n do
Sum:= Sum + i * i

 Recursion sum of squares
RecSum_Squares(m,n)
if m < n
then

Sum:= m * m + RecSum_Squares(m+1,n)
Sum:= m * m
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Iteration vs. Recursion
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 Recursion combining two half‐solutions
(method Divide-and-conquer)

RecSumSq(m,n)
if m = n
then

RecSumSq:= m * m
else

mid:= floor((m + n)/2)
RecSumSq:= RecSumSq(m,mid)+ RecSumSq(mid+1,n)
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Iteration vs. Recursion
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Iteration vs. Recursion
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 Call Tree for Recursion RecSumSc (5,10)
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 Fibonacci numbers fi are defined by the following recurrence

 This leads to the sequence
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 Problem:
How can we compute the i-th Fibonacci number fi ?

 We will present 3 sample solutions
 Recursive algorithm (fibrec)
 Iterative algorithm (fibiter)
 Iterative squaring algorithm (fibisq)

 We will have to investigate
 how good these algorithms perform and
 which of these solutions is the “best solution”!
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1) A recursive algorithm fibrec

 What does “recursive algorithm” mean?

 Again the recursive definition:

 For i=0, 1, ... compute
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Analysis of the recursive algorithm

 We could find out
the exact runtime for each operation and use these values

 Instead we typically procede as follows:
We count the number of arithmetic operations performed
when executing fibrec and consider this value as runtime
(or cost or complexity) of fibrec:
 Arithmetic operations: additions, subtractions, multiplications, divisions

 For simplicity here we assume
that all operations need the same amount of time for execution
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Analysis of the recursive algorithm

 Let Crec(i) be the cost of computing fi using fibrec(i)
 i.e. Crec(i) = 

number of arithmetic operations when computing fi using fibrec
 Then

 The values of Crec(i) for small values (i=0, 1, 2, ...) are
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Analysis of the recursive algorithm

 A closed-form expression for the cost Crec(i) would be fine!

 “Someone guesses” that (for i=0, 1, ...)

 Try to proof this assumption!
(Which method of proof would be your favorite choice?)
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Calculating Fibonacci Numbers

Analysis of the recursive algorithm

 Use this result
to find information about fi
 Find lower and upper bounds
 Hint: Show that for i > 0

 fi is positive
 fi is monotonically increasing

 Result: For i > 2:

 fi growing exponentially
 Crec(i)   growing exponentially
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2) An iterative algorithm fibiter

 For i=0, 1, ... compute

 Claim: fibiter(i) = fi for i=0, 1, ...

Calculating Fibonacci Numbers

fibiter(i)

if i=0 then return 0
if i=1 then return 1

ppred := 0 ▻ pre-predecessor
pred := 1 ▻ predecessor

for j := 2 to i do
curr := pred+ppred ▻ current
ppred := pred
pred := curr

return curr
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Analysis of the iterative algorithm

 Let Citer(i) be the cost of computing fi using fibiter(i)
(remember: cost = “number of arithmetic operations”)

 Then

 This means: Linear complexity of fibiter !
 Expl:

 So fibiter is much better than fibrec

 But: Is it possible to find an even better algorithm than fibiter ?

Calculating Fibonacci Numbers

 199)200(200or          99)100(100  iteriter CiCi



Data Structures and Algorithms (38)

3) An iterative squaring algorithm fibisq

 Remark: We will see later what “iterative squaring” means

 Let us start with some preparations:

Prove that the following holds for i=2, 3, ...

where
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 Function pow implements the iterative squaring:

pow(a, n) = an      for arbitrary a  and  n=1, 2, ... 
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Analysis of the runtime of pow



 For given n there are                           recursice calls 
to function pow

 Each call involves at most
 1 integer subtraction (only if odd)
 1 integer division
 2 multiplications (of values of type(a))      (only 1 multiplication, if n even)
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The iterative squaring algorithm fibisq

 For i=0, 1, ... compute

 Claim: fibisq (i) = fi for i=0, 1, ...
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Analysis of fibisq:

 The only arithmetic operations involved are in the call pow(A, i-1)
 There are  such calls, each involving at most

 1 integer subtraction
 1 integer division
 2 multiplications of (2x2) matrices

(each involving 8 integer multiplications and 4 integer additions)
summing up to at most 26 arithmetic operations per call

 So the cost Cisq(i) of fibisq is:

  Logarithmic complexity of fibisq!    (“Divide and Conquer”)
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Interpretation

 Cost comparison of                                          for calculating the 
i-th Fibonacci number

i = 50:

i = 100:

i = 200:

i = 300:

i = 400:
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Interpretation

 The runtimes of the three algorithms computing the same function
(Fibonacci number) differ significantly!

 If we assume that arithmetic operation takes 1 microsecond,
the following table gives the maximal value i
for which fi can be computed in a given time (1 ms, …, 1 h)
using the respective method (based on measurements):
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Is our analysis realistic?

 We only counted arithmetic operations

 We assumed that all arithmetic operations take the same time

 The time to perform one arithmetic operation may depend on the
value of the arguments involved

(it takes longer to add two 1000-digit numbers 
than to add two 10-digit numbers)

 But the trend for large values of i is very clear!
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