
Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstraße 3, 91058 Erlangen

Introduction to
Data Structures and Algorithms

Chapter: Calculating Fibonacci Numbers

 Iterative sum of squares
ItSum_Squares(m,n)
Sum:=0
for i = m to n do
Sum:= Sum + i * i

 Recursion sum of squares
RecSum_Squares(m,n)
if m < n
then

Sum:= m * m + RecSum_Squares(m+1,n)
Sum:= m * m

Data Structures and Algorithms (26)

Iteration vs. Recursion

 Example)1(2222 where m ≤ n, n, m ∈ N

nmmi
n

mi

 Recursion combining two half‐solutions
(method Divide-and-conquer)

RecSumSq(m,n)
if m = n
then

RecSumSq:= m * m
else

mid:= floor((m + n)/2)
RecSumSq:= RecSumSq(m,mid)+ RecSumSq(mid+1,n)

Data Structures and Algorithms (26)

Iteration vs. Recursion

 Example)1(2222 where m ≤ n, n, m ∈ N

nmmi
n

mi

Iteration vs. Recursion

355

RecSumSq(5,10)

110 245

RecSumSq(5,7)

RecSumSq(8,9)

61 145 100

25 36 64

81

RecSumSq(5,6) RecSumSq(7,7)

RecSumSq(8,10)

RecSumSq(10,10)

RecSumSq(5,5) RecSumSq(6,6) RecSumSq(8,8) RecSumSq(9,9)

25 36

 Call Tree for Recursion RecSumSc (5,10)

Data Structures and Algorithms (28)

49

49 64 100

81

Data Structures and Algorithms (29)

 Fibonacci numbers fi are defined by the following recurrence

 This leads to the sequence

Calculating Fibonacci Numbers

Data Structures and Algorithms (30)

 Problem:
How can we compute the i-th Fibonacci number fi ?

 We will present 3 sample solutions
 Recursive algorithm (fibrec)
 Iterative algorithm (fibiter)
 Iterative squaring algorithm (fibisq)

 We will have to investigate
 how good these algorithms perform and
 which of these solutions is the “best solution”!

Calculating Fibonacci Numbers

Data Structures and Algorithms (31)

1) A recursive algorithm fibrec

 What does “recursive algorithm” mean?

 Again the recursive definition:

 For i=0, 1, ... compute

Calculating Fibonacci Numbers

Data Structures and Algorithms (32)

Analysis of the recursive algorithm

 We could find out
the exact runtime for each operation and use these values

 Instead we typically procede as follows:
We count the number of arithmetic operations performed
when executing fibrec and consider this value as runtime
(or cost or complexity) of fibrec:
 Arithmetic operations: additions, subtractions, multiplications, divisions

 For simplicity here we assume
that all operations need the same amount of time for execution

Calculating Fibonacci Numbers

Data Structures and Algorithms (33)

Analysis of the recursive algorithm

 Let Crec(i) be the cost of computing fi using fibrec(i)
 i.e. Crec(i) =

number of arithmetic operations when computing fi using fibrec
 Then

 The values of Crec(i) for small values (i=0, 1, 2, ...) are

Calculating Fibonacci Numbers

Data Structures and Algorithms (34

Analysis of the recursive algorithm

 A closed-form expression for the cost Crec(i) would be fine!

 “Someone guesses” that (for i=0, 1, ...)

 Try to proof this assumption!
(Which method of proof would be your favorite choice?)

Calculating Fibonacci Numbers

Data Structures and Algorithms (35)

Calculating Fibonacci Numbers

Analysis of the recursive algorithm

 Use this result
to find information about fi
 Find lower and upper bounds
 Hint: Show that for i > 0

 fi is positive
 fi is monotonically increasing

 Result: For i > 2:

 fi growing exponentially
 Crec(i) growing exponentially

2561610

26214451220

42.04

21.43

112

Upper
bound
(fi)

Lower
bound
(fi)

i

3013 10)100(10 :Expl recC

Data Structures and Algorithms (36)

2) An iterative algorithm fibiter

 For i=0, 1, ... compute

 Claim: fibiter(i) = fi for i=0, 1, ...

Calculating Fibonacci Numbers

fibiter(i)

if i=0 then return 0
if i=1 then return 1

ppred := 0 ▻ pre-predecessor
pred := 1 ▻ predecessor

for j := 2 to i do
curr := pred+ppred ▻ current
ppred := pred
pred := curr

return curr

Data Structures and Algorithms (37)

Analysis of the iterative algorithm

 Let Citer(i) be the cost of computing fi using fibiter(i)
(remember: cost = “number of arithmetic operations”)

 Then

 This means: Linear complexity of fibiter !
 Expl:

 So fibiter is much better than fibrec

 But: Is it possible to find an even better algorithm than fibiter ?

Calculating Fibonacci Numbers

 199)200(200or 99)100(100 iteriter CiCi

Data Structures and Algorithms (38)

3) An iterative squaring algorithm fibisq

 Remark: We will see later what “iterative squaring” means

 Let us start with some preparations:

Prove that the following holds for i=2, 3, ...

where

Calculating Fibonacci Numbers

Data Structures and Algorithms (39)

 Function pow implements the iterative squaring:

pow(a, n) = an for arbitrary a and n=1, 2, ...

Calculating Fibonacci Numbers

Data Structures and Algorithms 38)

Analysis of the runtime of pow

 For given n there are recursice calls
to function pow

 Each call involves at most
 1 integer subtraction (only if odd)
 1 integer division
 2 multiplications (of values of type(a)) (only 1 multiplication, if n even)

Calculating Fibonacci Numbers

 1)1)(log(4 2 nCostpow

Data Structures and Algorithms (41)

Calculating Fibonacci Numbers

The iterative squaring algorithm fibisq

 For i=0, 1, ... compute

 Claim: fibisq (i) = fi for i=0, 1, ...

2221

1211

22

P

 withPmatrix of

pp

pp

pfi

Data Structures and Algorithms (42)

Analysis of fibisq:

 The only arithmetic operations involved are in the call pow(A, i-1)
 There are such calls, each involving at most

 1 integer subtraction
 1 integer division
 2 multiplications of (2x2) matrices

(each involving 8 integer multiplications and 4 integer additions)
summing up to at most 26 arithmetic operations per call

 So the cost Cisq(i) of fibisq is:

 Logarithmic complexity of fibisq! (“Divide and Conquer”)

Calculating Fibonacci Numbers

 1)1)1(log(26)(2 iiCisq

Data Structures and Algorithms (43)

Interpretation

 Cost comparison of for calculating the
i-th Fibonacci number

i = 50:

i = 100:

i = 200:

i = 300:

i = 400:

Calculating Fibonacci Numbers

)(vs.)(vs.)(iCiCiC isqiterrec

157)50(vs.49)50(vs.10)50(10 167 isqiterrec CCC

183)100(vs.99)100(vs.10)100(10 3014 isqiterrec CCC

209)200(vs.199)200(vs.10)200(10 6129 isqiterrec CCC

235)300(vs.299)300(vs.10)300(10 9144 isqiterrec CCC

235)400(vs.399)400(vs.10)400(10 12159 isqiterrec CCC

Data Structures and Algorithms (44)

Interpretation

 The runtimes of the three algorithms computing the same function
(Fibonacci number) differ significantly!

 If we assume that arithmetic operation takes 1 microsecond,
the following table gives the maximal value i
for which fi can be computed in a given time (1 ms, …, 1 h)
using the respective method (based on measurements):

Calculating Fibonacci Numbers

Data Structures and Algorithms (45)

Is our analysis realistic?

 We only counted arithmetic operations

 We assumed that all arithmetic operations take the same time

 The time to perform one arithmetic operation may depend on the
value of the arguments involved

(it takes longer to add two 1000-digit numbers
than to add two 10-digit numbers)

 But the trend for large values of i is very clear!

Calculating Fibonacci Numbers

	Iteration-Recursion.pdf
	Iteration vs. Recursion
	Iteration vs. Recursion
	Iteration vs. Recursion

	Kopie-Ch2_Calculating Fibonacci.pdf
	Calculating Fibonacci Numbers

