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 Iterative sum of squares
ItSum_Squares(m,n)
Sum:=0
for i = m to n do
Sum:= Sum + i * i

 Recursion sum of squares
RecSum_Squares(m,n)
if m < n
then

Sum:= m * m + RecSum_Squares(m+1,n)
Sum:= m * m
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Iteration vs. Recursion
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 Recursion combining two half‐solutions
(method Divide-and-conquer)

RecSumSq(m,n)
if m = n
then

RecSumSq:= m * m
else

mid:= floor((m + n)/2)
RecSumSq:= RecSumSq(m,mid)+ RecSumSq(mid+1,n)
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Iteration vs. Recursion
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 Call Tree for Recursion RecSumSc (5,10)
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 Fibonacci numbers fi are defined by the following recurrence

 This leads to the sequence
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 Problem:
How can we compute the i-th Fibonacci number fi ?

 We will present 3 sample solutions
 Recursive algorithm (fibrec)
 Iterative algorithm (fibiter)
 Iterative squaring algorithm (fibisq)

 We will have to investigate
 how good these algorithms perform and
 which of these solutions is the “best solution”!
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1) A recursive algorithm fibrec

 What does “recursive algorithm” mean?

 Again the recursive definition:

 For i=0, 1, ... compute
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Analysis of the recursive algorithm

 We could find out
the exact runtime for each operation and use these values

 Instead we typically procede as follows:
We count the number of arithmetic operations performed
when executing fibrec and consider this value as runtime
(or cost or complexity) of fibrec:
 Arithmetic operations: additions, subtractions, multiplications, divisions

 For simplicity here we assume
that all operations need the same amount of time for execution
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Analysis of the recursive algorithm

 Let Crec(i) be the cost of computing fi using fibrec(i)
 i.e. Crec(i) = 

number of arithmetic operations when computing fi using fibrec
 Then

 The values of Crec(i) for small values (i=0, 1, 2, ...) are
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Analysis of the recursive algorithm

 A closed-form expression for the cost Crec(i) would be fine!

 “Someone guesses” that (for i=0, 1, ...)

 Try to proof this assumption!
(Which method of proof would be your favorite choice?)
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Analysis of the recursive algorithm

 Use this result
to find information about fi
 Find lower and upper bounds
 Hint: Show that for i > 0

 fi is positive
 fi is monotonically increasing

 Result: For i > 2:

 fi growing exponentially
 Crec(i)   growing exponentially
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2) An iterative algorithm fibiter

 For i=0, 1, ... compute

 Claim: fibiter(i) = fi for i=0, 1, ...

Calculating Fibonacci Numbers

fibiter(i)

if i=0 then return 0
if i=1 then return 1

ppred := 0 ▻ pre-predecessor
pred := 1 ▻ predecessor

for j := 2 to i do
curr := pred+ppred ▻ current
ppred := pred
pred := curr

return curr
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Analysis of the iterative algorithm

 Let Citer(i) be the cost of computing fi using fibiter(i)
(remember: cost = “number of arithmetic operations”)

 Then

 This means: Linear complexity of fibiter !
 Expl:

 So fibiter is much better than fibrec

 But: Is it possible to find an even better algorithm than fibiter ?
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3) An iterative squaring algorithm fibisq

 Remark: We will see later what “iterative squaring” means

 Let us start with some preparations:

Prove that the following holds for i=2, 3, ...

where
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 Function pow implements the iterative squaring:

pow(a, n) = an      for arbitrary a  and  n=1, 2, ... 
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Analysis of the runtime of pow



 For given n there are                           recursice calls 
to function pow

 Each call involves at most
 1 integer subtraction (only if odd)
 1 integer division
 2 multiplications (of values of type(a))      (only 1 multiplication, if n even)
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The iterative squaring algorithm fibisq

 For i=0, 1, ... compute

 Claim: fibisq (i) = fi for i=0, 1, ...
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Analysis of fibisq:

 The only arithmetic operations involved are in the call pow(A, i-1)
 There are  such calls, each involving at most

 1 integer subtraction
 1 integer division
 2 multiplications of (2x2) matrices

(each involving 8 integer multiplications and 4 integer additions)
summing up to at most 26 arithmetic operations per call

 So the cost Cisq(i) of fibisq is:

  Logarithmic complexity of fibisq!    (“Divide and Conquer”)
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Interpretation

 Cost comparison of                                          for calculating the 
i-th Fibonacci number

i = 50:

i = 100:

i = 200:

i = 300:

i = 400:
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Interpretation

 The runtimes of the three algorithms computing the same function
(Fibonacci number) differ significantly!

 If we assume that arithmetic operation takes 1 microsecond,
the following table gives the maximal value i
for which fi can be computed in a given time (1 ms, …, 1 h)
using the respective method (based on measurements):
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Is our analysis realistic?

 We only counted arithmetic operations

 We assumed that all arithmetic operations take the same time

 The time to perform one arithmetic operation may depend on the
value of the arguments involved

(it takes longer to add two 1000-digit numbers 
than to add two 10-digit numbers)

 But the trend for large values of i is very clear!
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