
Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstraße 3, 91058 Erlangen

Introduction to
Data Structures and Algorithms

Chapter: Calculating Fibonacci Numbers

 Iterative sum of squares
ItSum_Squares(m,n)
Sum:=0
for i = m to n do
Sum:= Sum + i * i

 Recursion sum of squares
RecSum_Squares(m,n)
if m < n
then

Sum:= m * m + RecSum_Squares(m+1,n)
Sum:= m * m

Data Structures and Algorithms (26)

Iteration vs. Recursion

 Example)1(2222 where m ≤ n, n, m ∈ N


nmmi
n

mi



 Recursion combining two half‐solutions
(method Divide-and-conquer)

RecSumSq(m,n)
if m = n
then

RecSumSq:= m * m
else

mid:= floor((m + n)/2)
RecSumSq:= RecSumSq(m,mid)+ RecSumSq(mid+1,n)

Data Structures and Algorithms (26)

Iteration vs. Recursion

 Example)1(2222 where m ≤ n, n, m ∈ N


nmmi
n

mi



Iteration vs. Recursion

355

RecSumSq(5,10)

110 245

RecSumSq(5,7)

RecSumSq(8,9)

61 145 100

25 36 64

81

RecSumSq(5,6) RecSumSq(7,7)

RecSumSq(8,10)

RecSumSq(10,10)

RecSumSq(5,5) RecSumSq(6,6) RecSumSq(8,8) RecSumSq(9,9)

25 36

 Call Tree for Recursion RecSumSc (5,10)

Data Structures and Algorithms (28)

49

49 64 100

81

Data Structures and Algorithms (29)

 Fibonacci numbers fi are defined by the following recurrence

 This leads to the sequence

Calculating Fibonacci Numbers

Data Structures and Algorithms (30)

 Problem:
How can we compute the i-th Fibonacci number fi ?

 We will present 3 sample solutions
 Recursive algorithm (fibrec)
 Iterative algorithm (fibiter)
 Iterative squaring algorithm (fibisq)

 We will have to investigate
 how good these algorithms perform and
 which of these solutions is the “best solution”!

Calculating Fibonacci Numbers

Data Structures and Algorithms (31)

1) A recursive algorithm fibrec

 What does “recursive algorithm” mean?

 Again the recursive definition:

 For i=0, 1, ... compute

Calculating Fibonacci Numbers

Data Structures and Algorithms (32)

Analysis of the recursive algorithm

 We could find out
the exact runtime for each operation and use these values

 Instead we typically procede as follows:
We count the number of arithmetic operations performed
when executing fibrec and consider this value as runtime
(or cost or complexity) of fibrec:
 Arithmetic operations: additions, subtractions, multiplications, divisions

 For simplicity here we assume
that all operations need the same amount of time for execution

Calculating Fibonacci Numbers

Data Structures and Algorithms (33)

Analysis of the recursive algorithm

 Let Crec(i) be the cost of computing fi using fibrec(i)
 i.e. Crec(i) =

number of arithmetic operations when computing fi using fibrec
 Then

 The values of Crec(i) for small values (i=0, 1, 2, ...) are

Calculating Fibonacci Numbers

Data Structures and Algorithms (34

Analysis of the recursive algorithm

 A closed-form expression for the cost Crec(i) would be fine!

 “Someone guesses” that (for i=0, 1, ...)

 Try to proof this assumption!
(Which method of proof would be your favorite choice?)

Calculating Fibonacci Numbers

Data Structures and Algorithms (35)

Calculating Fibonacci Numbers

Analysis of the recursive algorithm

 Use this result
to find information about fi
 Find lower and upper bounds
 Hint: Show that for i > 0

 fi is positive
 fi is monotonically increasing

 Result: For i > 2:

 fi growing exponentially
 Crec(i) growing exponentially

2561610

26214451220

42.04

21.43

112

Upper
bound
(fi)

Lower
bound
(fi)

i

3013 10)100(10 :Expl  recC

Data Structures and Algorithms (36)

2) An iterative algorithm fibiter

 For i=0, 1, ... compute

 Claim: fibiter(i) = fi for i=0, 1, ...

Calculating Fibonacci Numbers

fibiter(i)

if i=0 then return 0
if i=1 then return 1

ppred := 0 ▻ pre-predecessor
pred := 1 ▻ predecessor

for j := 2 to i do
curr := pred+ppred ▻ current
ppred := pred
pred := curr

return curr

Data Structures and Algorithms (37)

Analysis of the iterative algorithm

 Let Citer(i) be the cost of computing fi using fibiter(i)
(remember: cost = “number of arithmetic operations”)

 Then

 This means: Linear complexity of fibiter !
 Expl:

 So fibiter is much better than fibrec

 But: Is it possible to find an even better algorithm than fibiter ?

Calculating Fibonacci Numbers

 199)200(200or 99)100(100  iteriter CiCi

Data Structures and Algorithms (38)

3) An iterative squaring algorithm fibisq

 Remark: We will see later what “iterative squaring” means

 Let us start with some preparations:

Prove that the following holds for i=2, 3, ...

where

Calculating Fibonacci Numbers

Data Structures and Algorithms (39)

 Function pow implements the iterative squaring:

pow(a, n) = an for arbitrary a and n=1, 2, ...

Calculating Fibonacci Numbers

Data Structures and Algorithms 38)

Analysis of the runtime of pow



 For given n there are recursice calls
to function pow

 Each call involves at most
 1 integer subtraction (only if odd)
 1 integer division
 2 multiplications (of values of type(a)) (only 1 multiplication, if n even)

Calculating Fibonacci Numbers

  1)1)(log(4 2  nCostpow

Data Structures and Algorithms (41)

Calculating Fibonacci Numbers

The iterative squaring algorithm fibisq

 For i=0, 1, ... compute

 Claim: fibisq (i) = fi for i=0, 1, ...


















2221

1211

22

P

 withPmatrix of

pp

pp

pfi

Data Structures and Algorithms (42)

Analysis of fibisq:

 The only arithmetic operations involved are in the call pow(A, i-1)
 There are such calls, each involving at most

 1 integer subtraction
 1 integer division
 2 multiplications of (2x2) matrices

(each involving 8 integer multiplications and 4 integer additions)
summing up to at most 26 arithmetic operations per call

 So the cost Cisq(i) of fibisq is:

  Logarithmic complexity of fibisq! (“Divide and Conquer”)

Calculating Fibonacci Numbers

  1)1)1(log(26)(2  iiCisq

Data Structures and Algorithms (43)

Interpretation

 Cost comparison of for calculating the
i-th Fibonacci number

i = 50:

i = 100:

i = 200:

i = 300:

i = 400:

Calculating Fibonacci Numbers

)(vs.)(vs.)(iCiCiC isqiterrec

157)50(vs.49)50(vs.10)50(10 167  isqiterrec CCC

183)100(vs.99)100(vs.10)100(10 3014  isqiterrec CCC

209)200(vs.199)200(vs.10)200(10 6129  isqiterrec CCC

235)300(vs.299)300(vs.10)300(10 9144  isqiterrec CCC

235)400(vs.399)400(vs.10)400(10 12159  isqiterrec CCC

Data Structures and Algorithms (44)

Interpretation

 The runtimes of the three algorithms computing the same function
(Fibonacci number) differ significantly!

 If we assume that arithmetic operation takes 1 microsecond,
the following table gives the maximal value i
for which fi can be computed in a given time (1 ms, …, 1 h)
using the respective method (based on measurements):

Calculating Fibonacci Numbers

Data Structures and Algorithms (45)

Is our analysis realistic?

 We only counted arithmetic operations

 We assumed that all arithmetic operations take the same time

 The time to perform one arithmetic operation may depend on the
value of the arguments involved

(it takes longer to add two 1000-digit numbers
than to add two 10-digit numbers)

 But the trend for large values of i is very clear!

Calculating Fibonacci Numbers

	Iteration-Recursion.pdf
	Iteration vs. Recursion
	Iteration vs. Recursion
	Iteration vs. Recursion

	Kopie-Ch2_Calculating Fibonacci.pdf
	Calculating Fibonacci Numbers

