Introduction to Data Structures and Algorithms

Chapter: Calculating Fibonacci Numbers

Friedrich-Alexander-Universität Erlangen-Nürnberg

Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German) Martensstraße 3, 91058 Erlangen

Example
$$\sum_{i=m}^{n} i^2 = m^2 + (m+1)^2 + \dots + n^2$$
 where $m \le n, n, m \in N$

```
Iterative sum of squares
ItSum_Squares(m,n)
Sum:=0
for i = m to n do
Sum:= Sum + i * i
```

```
Recursion sum of squares
RecSum_Squares(m,n)
if m < n
then
Sum:= m * m + RecSum_Squares(m+1,n)
Sum:= m * m</pre>
```

Example
$$\sum_{i=m}^{n} i^2 = m^2 + (m+1)^2 + \dots + n^2$$
 where $m \le n, n, m \in \mathbb{N}$

```
Recursion combining two half-solutions
(method Divide-and-conquer)
```

```
RecSumSq(m,n)
if m = n
then
RecSumSq:= m * m
else
mid:= floor((m + n)/2)
RecSumSq:= RecSumSq(m,mid)+ RecSumSq(mid+1,n)
```

Call Tree for Recursion RecSumSc (5,10)

Fibonacci numbers f_i are defined by the following recurrence

$$f_0 = 0$$

$$f_1 = 1$$

$$f_i = f_{i-1} + f_{i-2} \quad \text{for} \quad i \ge 2$$

This leads to the sequence

Data Structures and Algorithms (29)

Problem:

How can we compute the i-th Fibonacci number f_i?

- We will present 3 sample solutions
 - Recursive algorithm (*fibrec*)
 - Iterative algorithm (*fibiter*)
 - Iterative squaring algorithm (*fibisq*)
- We will have to investigate
 - how good these algorithms perform and
 - which of these solutions is the "best solution"!

1) A recursive algorithm *fibrec*

- What does "recursive algorithm" mean?
 - Again the recursive definition:

$$f_0 = 0$$

$$f_1 = 1$$

$$f_i = f_{i-1} + f_{i-2} \quad \text{for} \quad i \ge 2$$

For i=0, 1, ... compute

```
fibrec(i)
    if i=0 then return 0
    if i=1 then return 1
    return fibrec(i-1)+fibrec(i-2)
```

Analysis of the recursive algorithm

- We could find out the exact runtime for each operation and use these values
- Instead we typically procede as follows: We count the number of arithmetic operations performed when executing *fibrec* and consider this value as runtime (or cost or complexity) of *fibrec*:
 - Arithmetic operations: additions, subtractions, multiplications, divisions
- For simplicity here we assume that all operations need the same amount of time for execution

Analysis of the recursive algorithm

- Let C_{rec}(i) be the cost of computing f_i using *fibrec*(i)
 - i.e. C_{rec}(i) = number of arithmetic operations when computing f_i using *fibrec*

Then

$$C_{rec}(0) = 0$$

$$C_{rec}(1) = 0$$

$$C_{rec}(i) = 3 + C_{rec}(i-1) + C_{rec}(i-2) \text{ for } i \ge 2$$

■ The values of C_{rec}(i) for small values (i=0, 1, 2, ...) are

Analysis of the recursive algorithm

A closed-form expression for the cost C_{rec}(i) would be fine!

"Someone guesses" that (for i=0, 1, ...)

$$C_{rec}(i) = 3f_{i+1} - 3$$

Try to proof this assumption!

(Which method of proof would be your favorite choice?)

Analysis of the recursive algorithm

- Use this result to find information about f_i
 - Find lower and upper bounds
 - Hint: Show that for i > 0
 - f_i is positive
 - f_i is monotonically increasing
- Result: For i > 2:

$$2^{(i-2)/2} \le f_i \le 2^{i-2}$$

- \Rightarrow f_i growing exponentially
- $\Rightarrow \mathbf{C}_{rec}(\mathbf{i}) \quad \text{growing exponentially} \\ \text{Expl:} \quad 10^{13} \le C_{rec}(100) \le 10^{30}$

i	Lower bound (f _i)	Upper bound (f _i)	
2	1	1	
3	1.4	2	
4	2.0	4	
10	16	256	
20	512	262144	

2) An iterative algorithm fibiter

Analysis of the iterative algorithm

Let C_{iter}(i) be the cost of computing f_i using *fibiter*(i) (remember: cost = "number of arithmetic operations")

Then
$$C_{iter}(0) = 0$$

 $C_{iter}(1) = 0$
 $C_{iter}(i) = i - 1$ for $i \ge 2$

- This means: Linear complexity of fibiter !
 - Expl: $i = 100 \Rightarrow C_{iter}(100) = 99$ or $i = 200 \Rightarrow C_{iter}(200) = 199$
- So *fibiter* is much better than *fibrec*
- But: Is it possible to find an even better algorithm than *fibiter*?

3) An iterative squaring algorithm *fibisq*

- Remark: We will see later what "iterative squaring" means
- Let us start with some preparations:

Prove that the following holds for i=2, 3, ...

$$\begin{pmatrix} f_{i-1} \\ f_i \end{pmatrix} = A^{(i-1)} * \begin{pmatrix} f_0 \\ f_1 \end{pmatrix}$$

where

$$A = \left(\begin{array}{c} 0 \ 1\\ 1 \ 1 \end{array}\right)$$

Function pow implements the *iterative squaring*:

```
pow(a, n) = a^n for arbitrary a and n=1, 2, ...
```

```
pow(a,n)
```

if n=1 then return a
if n even then
 x := pow(a,n/2)
 return x*x

```
if n odd then
  x := pow(a, (n-1)/2)
  return x*x*a
```

Analysis of the runtime of *pow*

- (Note: For $x \in \mathbb{R}$, $\lfloor x \rfloor$ (to be read "floor of x") denotes the largest integer that is $\leq x$.)
- For given n there are $\lfloor \log_2 n \rfloor + 1$ recursice calls to function *pow*
 - Each call involves at most
 - 1 integer subtraction (only if odd)
 - 1 integer division
 - 2 multiplications (of values of type(a)) (only 1 multiplication, if n even)

 $Cost_{pow} \le 4 \cdot (\lfloor \log_2(n) \rfloor + 1) + 1$

The iterative squaring algorithm fibisq

For i=0, 1, ... compute

```
fibisq(i)

if i=0 then return 0

if i=1 then return 1

A := \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}
P := pow(A, i-1)
return P[2, 2]
P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix}
```

Claim: *fibisq* (i) = f_i for i=0, 1, ...

Data Structures and Algorithms (41)

Analysis of *fibisq*:

- The only arithmetic operations involved are in the call pow(A, i-1)
- $|\log_2(i-1)| + 1$ such calls, each involving <u>at most</u> There are
 - 1 integer subtraction
 - 1 integer division
 - 2 multiplications of (2x2) matrices (each involving 8 integer multiplications and 4 integer additions) summing up to at most 26 arithmetic operations per call
- So the cost C_{isq}(i) of *fibisq* is:

$$C_{isq}(i) \le 26 \cdot (\lfloor \log_2(i-1) \rfloor + 1) + 1$$

⇒ Logarithmic complexity of *fibisq*! ("*Divide and Conquer*")

Interpretation

Cost comparison of $C_{rec}(i)$ vs. $C_{iter}(i)$ vs. $C_{isq}(i)$ for calculating the i-th Fibonacci number

i = 50:
$$10^7 \le C_{rec}(50) \le 10^{16}$$
 vs. $C_{iter}(50) = 49$ vs. $C_{isg}(50) \le 157$

i = 100:
$$10^{14} \le C_{rec}(100) \le 10^{30}$$
 vs. $C_{iter}(100) = 99$ vs. $C_{isq}(100) \le 183$

- <u>i = 200:</u> $10^{29} \le C_{rec}(200) \le 10^{61}$ vs. $C_{iier}(200) = 199$ vs. $C_{isg}(200) \le 209$
- <u>**i**</u> = 300: $10^{44} \le C_{rec}(300) \le 10^{91}$ vs. $C_{iter}(300) = 299$ vs. $C_{isg}(300) \le 235$
- <u>i = 400:</u> $10^{59} \le C_{rec}(400) \le 10^{121}$ vs. $C_{iter}(400) = 399$ vs. $C_{isg}(400) \le 235$

Interpretation

- The runtimes of the three algorithms computing the same function (Fibonacci number) differ significantly!
- If we assume that arithmetic operation takes 1 microsecond, the following table gives the maximal value i for which f_i can be computed in a given time (1 ms, ..., 1 h) using the respective method (based on measurements):

	1ms	1s	1min	1h
recursive	14	28	37	45
iterative	500	$5 \cdot 10^5$	$3 \cdot 10^7$	$2 \cdot 10^9$
iterative squaring	10^{12}	$10^{12,000}$	$10^{700,000}$	10^{10^6}

Is our analysis realistic?

- We only counted arithmetic operations
- We assumed that all arithmetic operations take the same time
- The time to perform one arithmetic operation may depend on the value of the arguments involved (it takes longer to add two 1000-digit numbers
 - than to add two 10-digit numbers)
- But the trend for large values of i is very clear!